AI-Driven Planning for Subsea Cable Routes

The project develops machine learning-based decision support to automate the analysis of data in subsea cable route planning – improving accuracy, reducing risks, and minimizing manual work.
Datadrivet beslutsstöd för analys av undervattenskabelrutter

Projektmål

Tidsplan

Kontaktpersoner bakom projektet

Finansiärer / Partners

Bakgrund till varför projekt startades

Planning subsea cable routes is currently a time-consuming process requiring manual review of massive sonar and sensor datasets. There’s a clear need to automate and streamline this process to improve efficiency, ensure precision, and reduce human error – especially in areas with complex seabeds or hidden hazards.

Beskrivning av projektet i sin helhet

The project uses machine learning and cloud-based analytics to automatically identify optimal cable routes. The system analyzes:

– Real-time sonar and CPT sensor data
– Large-scale geophysical and geotechnical datasets
– Detection of subsea objects such as rocks, shipwrecks, and UXO

The result is a decision support tool that automates route identification, risk analysis, and planning based on seabed conditions and cable requirements.

Resultatet, Vad hände sen?

Diskutera vidare med forskare/team

Kontakta oss för att prata mer om ditt projekt.

Testbädd

Fler projekt

Marine Technology Testbed for Innovation and Research

Marine Technology Testbed for Innovation and Research

Agile Innovation Through Minimal Prototypes

Agile Innovation Through Minimal Prototypes

Robust Software for Mission-Critical Systems

Robust Software for Mission-Critical Systems

AI-Driven Planning for Subsea Cable Routes

AI-Driven Planning for Subsea Cable Routes